On the reducibility of linear differential equations with quasiperiodic coefficients
نویسندگان
چکیده
منابع مشابه
A Note on the Reducibility of Linear Differential Equations with Quasiperiodic Coefficients
with x an n-dimensional vector, A a constant square matrix of order n, and Q a square matrix of order n, quasiperiodic in time t. We say that a change of variables x = P(t)y is a Lyapunov-Perron (LP) transformation if P(t) is nonsingular and P(t), P−1(t), and Ṗ (t) are bounded for all t ∈R. Moreover, if P , P−1, and Ṗ are quasiperiodic in time t, we refer to x = P(t)y as a quasiperiodic LP tran...
متن کاملReducibility of linear equations with quasi-periodic coefficients. A survey
Preface This survey deals with some aspects of the problem of reducibility for linear equations with quasi-periodic coefficients. It is a compilation of results on this problem, some already classical and some other more recent. Our motivation comes from the study of stability of quasi-periodic motions and preservation of invariant tori in Hamiltonian mechanics (where the reducibility of linear...
متن کاملLinear Differential Algebraic Equations with Constant Coefficients
Differential-algebraic equations (DAEs) arise in a variety of applications. Their analysis and numerical treatment, therefore, plays an important role in modern mathematics. The paper gives an introduction to the topics of DAEs. Examples of DAEs are considered showing their importance for practical problems. Some essential concepts that are really essential for understanding the DAE systems are...
متن کاملLinear fractional differential equations with variable coefficients
This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...
متن کاملOn systems of linear fractional differential equations with constant coefficients
This paper deals with the study of linear systems of fractional differential equations such as the following system: 0096-3 doi:10 * Co E-m Y ða 1⁄4 AðxÞY þ BðxÞ; ð1Þ where Y ða is the Riemann–Liouville or the Caputo fractional derivative of order a (0 < a 5 1), and AðxÞ 1⁄4 a11ðxÞ a1nðxÞ . . . . . . . . . an1ðxÞ annðxÞ 0BBBBBB@ 1CCCCCCA; BðxÞ 1⁄4 b1ðxÞ . . . . . . . . . bnðxÞ 0BBBBBB@ 1CCCCCCA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1992
ISSN: 0022-0396
DOI: 10.1016/0022-0396(92)90107-x